Connes' Distance of One-Dimensional Lattices:General Cases

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connes’ Distance of One-Dimensional Lattices: General Cases

Connes’ distance formula is applied to endow linear metric to three 1D lattices of different topology, with a generalization of lattice Dirac operator written down by Dimakis et al to contain a non-unitary link-variable. Geometric interpretation of this link-variable is lattice spacing and parallel transport. PACS: 02.40.Gh, 11.15.Ha

متن کامل

Transmission properties of one dimensional fractal structures

In this paper, the optical properties of one dimensional fractal structures are investigated. We consider six typical fractal photonic structures: the symmetric dual cantor-like fractal structure, the asymmetric dual cantor-like fractal structure, the single cantor-like fractal structure, the symmetric dual golden-section fractal structure, the asymmetric dual golden-section fractal structure a...

متن کامل

Graph-Laplacians and Dirac Operators and the Connes-Distance-Functional

We develop (within a possibly new) framework spectral analysis and operator theory on (almost) general graphs and use it to study spectral properies of the graph-Laplacian and so-called graph-Dirac-operators. That is, we introduce a Hilbert space structure, being in our framework the direct sum of a node-Hilbert-space and a bond-Hilbert-space, a Dirac operator intertwining these components, and...

متن کامل

Explicitly solvable cases of one-dimensional quantum chaos.

We identify a set of quantum graphs with unique and precisely defined spectral properties called regular quantum graphs. Although chaotic in their classical limit with positive topological entropy, regular quantum graphs are explicitly solvable. The proof is constructive: we present exact, convergent periodic orbit expansions for individual energy levels, thus obtaining an analytical solution f...

متن کامل

Short-distance wavefunction statistics in one-dimensional Anderson localization

We investigate the short-distance statistics of the local density of states ν in long one-dimensional disordered systems, which display Anderson localization. It is shown that the probability distribution function P (ν) can be recovered from the long-distance wavefunction statistics, if one also uses parameters that are irrelevant from the perspective of two-parameter scaling theory. PACS. 72.1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Theoretical Physics

سال: 2001

ISSN: 0253-6102

DOI: 10.1088/0253-6102/36/5/519